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This study presents the implementation of a Machine 

Learning-Based Health Index utilizing the K-Nearest 

Neighbors (K-NN) algorithm for predictive maintenance in 

desalination plants within gas and steam power plants. The 

research focuses on optimizing the maintenance schedule of 

the Block 3 Priok Desalination Plant, which is critical for 

providing high-quality distilled water for power generation. 

This study aims to develop and integrate a predictive 

maintenance framework into PLN’s digitization system, 

allowing for automated monitoring and optimized servicing 

schedules. Unlike the previous application of K-NN in Block 

4, which utilized five health indices for performance 

classification, Block 3 requires an expanded model 

incorporating at least seven input parameters due to its multi-

effect desalination process. By refining the predictive model 

and increasing data parameterization, this study seeks to 

enhance maintenance accuracy, minimize operational 

downtime, and improve overall desalination efficiency. By 

leveraging historical operational data and real-time 

monitoring, the K-NN model predicts the health index of 

desalination components with 98% accuracy. Implementing 

this approach minimizes downtime, optimizes maintenance 

schedules, and enhances energy efficiency. The results 

demonstrate that AI-driven predictive maintenance 

significantly improves reliability, reduces costs, and 

supports energy sustainability goals. 

 

 Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) 

 
 

Introduction  
PT PLN Indonesia Power UBP Priok runs a 2,800 MW gas and steam power plant 

(PLTGU), using Natural Gas Combined Cycle (NGCC) technology to improve efficiency 

by harnessing exhaust heat via Heat Recovery Steam Generation (HRSG).  This method 

transforms saltwater into steam, subsequently powering turbines to generate electrical 
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energy.  The PLTGU system relies on a reliable and high-quality freshwater supply, 

crucial for sustaining operating efficiency and sustainability (Khordagui, 1999). 

 Desalination units are essential for providing an adequate supply of distilled water 

inside the UBP Priok PLTGU (the unit visualization shown in Figure 1 and Plant Scheme 

displayed by Figure 2).  The facility has four working units, each with distinct 

desalination capacity.  Blocks 1 and 2 manage two desalination facilities with a total 

capacity of 960 tons per day; nevertheless, extended operation has resulted in diminished 

efficiency and decreased conductivity norms (Sasakura, 2012).  Block 4 has one 

desalination unit with a capacity of 280 tons per day, but Block 3 comprises two 

desalination plants with a total capacity of 610 tons per day, establishing it as the main 

source of freshwater production.  Due to its crucial function, Block 3 needs regular 

maintenance to maintain its performance, including preventive, corrective, and outage-

related measures. 

Maintenance procedures require a temporary suspension of operations, impacting 

water availability and perhaps compromising electricity generation (UBP Priok 

Operations Planning and Evaluation Division, 2012).  The desalination process is prone 

to efficiency decline owing to fouling, scaling, and operational wear, which may impair 

performance over time.  The manual method for maintenance scheduling, now reliant on 

six-month intervals, often fails to correspond with the real circumstances of the plant.  In 

some cases, desalination units need timely maintenance, but in others, servicing occurs 

prematurely, resulting in superfluous expenses and inefficiencies.  The absence of real-

time performance evaluation systems exacerbates operational planning, leading to 

unforeseen downtimes and output losses (Bwapwa et al., 2024). 

In June 2023, a notable decline in the productivity of desalination plant 3A was 

recorded owing to evaporator fouling, resulting in the unit being offline.  This disruption 

was ascribed to the persistent dependence on manual parameter analysis, which could not 

identify deterioration trends promptly.  This paper offers a machine learning-based 

predictive maintenance system using the K-Nearest Neighbors (K-NN) method to 

enhance the performance monitoring of desalination plants.  The K-NN technique 

facilitates data-driven categorization of system health, detecting probable faults 

beforehand and enhancing maintenance scheduling. 

 The K-NN method categorizes desalination plant conditions using historical 

operational data, detecting performance deterioration without necessitating prior 

assumptions on data distribution or variable interrelations.  This approach is adept at 

processing intricate and multidimensional data, allowing highly adaptable and precise 

predictive modeling (Tharwat et al., 2018).  In contrast to conventional maintenance 

scheduling, K-NN provides a more precise and adaptable approach for assessing the 

health of desalination systems, hence reducing dependence on fixed time-based service 

intervals. 

 The execution of the K-NN algorithm has several benefits.  Its non-parametric 

characteristics provide adaptability in managing unstructured and non-linear information, 

making it very useful for monitoring desalination plants.  Moreover, K-NN functions well 

without necessitating intricate training procedures, making it a viable instrument for real-

time predictive maintenance applications.  Nevertheless, certain constraints are present, 

such as heightened computing requirements for large datasets and possible performance 

decline attributable to the curse of dimensionality.  Notwithstanding these issues, K-NN 

continues to be a dependable and resilient method for categorizing health indicators of 

desalination plants and forecasting suitable maintenance intervals (Mukhtar, 2023). 
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 This project seeks to establish and incorporate a predictive maintenance framework 

within PLN’s digitalization system, enabling automated monitoring and enhanced service 

schedules.  In contrast to the earlier implementation of K-NN in Block 4, which used five 

health indices for performance classification, Block 3 necessitates an augmented model 

that includes a minimum of seven input parameters owing to its multi-effect desalination 

process.  This project aims to increase maintenance accuracy, reduce operational 

downtime, and boost overall desalination efficiency by improving the prediction model 

and expanding data parameterization. 

 The effective execution of K-NN-based predictive maintenance is anticipated to 

provide substantial advantages.  It would avert production losses resulting from 

unforeseen desalination plant failures, guaranteeing a continuous freshwater supply for 

electricity generation.  The methodology might also be used to other thermal power units, 

reducing the danger of derating caused by insufficient water supply.  The economic 

ramifications of this optimization are significant, since enhanced scheduling would 

reduce superfluous maintenance costs and increase resource efficiency.  Furthermore, the 

predictive framework is congruent with PLN's overarching goals, facilitating both 

environmental sustainability and operational efficiency measures. 

 Extensive testing and data analysis are necessary to confirm the efficacy of the 

suggested machine learning model.  The precision of K-NN predictions will be assessed 

by comparisons with historical datasets, evaluating its capacity to identify early-stage 

performance decline and suggest prompt maintenance actions.  This project will provide 

a framework for the extensive integration of machine learning in energy infrastructure 

management, therefore enhancing the role of artificial intelligence in the modernization 

of industrial processes. 

 This research seeks to provide a more dependable, cost-efficient, and data-driven 

methodology for desalination plant management by combining K-NN-driven predictive 

maintenance with IoT-based system monitoring.  The effective implementation of this 

model will not only improve operational resilience at PLTGU Priok but also provide a 

reference framework for future AI-driven maintenance strategies in the power generating 

and desalination sectors. 

 

Method 

This study was conducted at PT PLN Indonesia Power UBP Priok PLTGU Block 3 

to implement a machine learning-based predictive maintenance model using the K-

Nearest Neighbors (K-NN) algorithm for optimizing desalination plant operations. By 

leveraging operational data such as feed flow, steam temperature, product water flow, and 

conductivity, the model predicts ideal maintenance timing to reduce derating risks and 

improve reliability. Data was sourced from plant loggers integrated with the ACS system, 

processed using Maximo and Python tools, and split into 80% training and 20% test sets. 

The model was deployed into the PI System and visualized in the REOC dashboard to 

guide real-time maintenance planning. Evaluation showed reduced maintenance costs and 

improved energy efficiency. Validation used one-minute interval data covering the full 

operational cycle, with 15 key parameters supporting the classification. The study 

demonstrates that integrating K-NN into IoT-based systems enhances decision-making, 

supports PLN’s digital transformation, and lays a foundation for expanding predictive 

models across other plant components. 

 

Results and Discussion  
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The data collected was 129,343 rows from various parameters that had sequential 

time stamps. This data represents the best performance characteristics of the Desalination 

Plant until before the maintenance process occurs due to poor performance marked by a 

decrease in the production of distillate water. This data is then analyzed using a Visual 

Studio Code application using several environments based on the Python programming 

language. As shown in Figure 6, the data collected in the Visual Studio Code application 

is displayed. The dataset displayed in the Visual Studio Code application contains 

129,344 rows and 15 columns, capturing key operational parameters of a seawater 

desalination process, likely using a multi-effect distillation (MED) system. It includes 

variables such as Seawater Supply Flow, which measures the amount of seawater entering 

the system, and Feed Flow Rates for different effects, indicating water distribution across 

the desalination stages. The Product Water Flow and Product Water Conductivity assess 

the quantity and purity of the freshwater produced, while the Brine Level and Product 

Water Level track the remaining saline water and collected freshwater, respectively. 

Other critical parameters include Seawater Strainer Differential Pressure, which 

monitors flow resistance, R2 Condenser Pressure, related to heat exchange efficiency, 

and Main Ejector Steam Pressure, which influences vacuum creation. Additionally, the 

dataset records Seawater Discharge Temperature and Effect Steam Temperature, 

reflecting thermal performance. The Load Setter determines system capacity adjustments. 

This dataset provides valuable insights into the desalination process, enabling 

performance analysis, efficiency optimization, and potential issue detection to improve 

overall plant operations 

The main goal is to ensure that the data used for further analysis or processing is 

valid, consistent, and reliable. The next process is data analysis and visualization. The 

analysis was carried out by comparing one parameter of the desalination operation with 

all parameters of the desalination operation in the form of a scatter plot shown in Figure 

7. The data is then visualized with a scatter chart to make it easier to analyze. The data 

used are those that have a polylineal nature. Polylineal data is able to describe parameter 

data that is compared to having a correlation with other operational parameter data. This 

is done because the data to be used must have a near-linear correlation between one 

parameter and another. With the nature of the data, the classification results will be 

avoided from the biased nature of the output. The data taken has polylineal properties 

which are visualized in the chart figure 7. From the results of the analysis, 7 parameters 

will be used, namely 1st effect flow sea water, 2nd effect flow seawater, 3rd effect flow 

seawater, 4th effect flow seawater, Effect Steam Temperature, desalination load setter 

and product water flow. Fig 7 showed a scatter plot matrix (pair plot) displaying the 

relationships between multiple numerical variables in a desalination process dataset. Each 

small scatter plot represents a correlation between two different parameters, highlighting 

potential polynomial relationships between them. The patterns suggest varying degrees 

of linear and nonlinear dependencies across the dataset. From the analysis, seven key 

parameters have been selected for further study: 1st Effect Flow Seawater, 2nd Effect 

Flow Seawater, 3rd Effect Flow Seawater, 4th Effect Flow Seawater, Effect Steam 

Temperature, Desalination Load Setter, and Product Water Flow. These variables likely 

have significant influence on the desalination process's efficiency and performance. 

The data set is learner data (Training data) in the form of time stamp data that has 

a predetermined class label. The class label in question is the health index value that has 

been studied based on best practices by the system owner related to the movement of 

desalination operation parameter values. Figure 7 is a scatter plot matrix (pair plot) 
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displaying the relationships between multiple numerical variables in a desalination 

process dataset. Each small scatter plot represents a correlation between two different 

parameters, highlighting potential polynomial relationships between them. The patterns 

suggest varying degrees of linear and nonlinear dependencies across the dataset. From 

the analysis, seven key parameters have been selected for further study: 1st Effect Flow 

Seawater, 2nd Effect Flow Seawater, 3rd Effect Flow Seawater, 4th Effect Flow 

Seawater, Effect Steam Temperature, Desalination Load Setter, and Product Water Flow. 

These variables likely have significant influence on the desalination process's efficiency 

and performance. 

This dataset represents training data with time-stamped data that already has 

predefined class labels. The class label refers to the health index value that has been 

reviewed based on best practices by the system owner, by observing the movement of 

desalination operational parameters. The performance analysis of desalination block 3 is 

conducted comprehensively, considering several aspects of the manufacturer’s manual 

settings. Overall, the results of the analysis are displayed in Table 2. Some operational 

parameters of the desalination plant have different characteristics at each health index 

judgment. This occurs because the analysis of each health index change is based on best 

practice analysis conducted by the PLTGU Priok engineering team. Not all parameters 

will affect the change in the health index. The judgment of health index changes is based 

on changes in desalination operation parameters that are interconnected and have varying 

performance degradation levels, as determined by the manufacturer’s manual operation. 

 

.  

Figure 1. Distribution of Health index or class labels based on 4th Effect feed Flow 

 

The analysis parameters to determine whether the health index 5 changed or 

decreased to health index 4 were from 1st and 4th Effect feed Flow desalination. As a 

result of observation or visualization of data using the trends shown in Figure 4.3, there 

is a movement of the flow of sea water towards the 1st and 4th evaporator effects. The 

movement is due to the movement of the control valve that supplies the two lines. The 

movement or opening of the valve is due to an indication of foulness in the 1st and 4th 

sea water effect evaporator nozzle lines. Figure 8 and Figure 9 illustrate the relationship 

between feed flow rates and the health index (HI) over time for two different process 

effects: the 4th effect feed flow and the 2nd effect feed flow. In Figure 8, labeled "4rd 

flow vs HI," the 4th effect feed flow (blue line) remains relatively stable initially but 

experiences a gradual decline after a critical transition point (highlighted by the green 

circle), which corresponds to a stepwise decrease in the health index (orange line). 

Similarly, Figure 9, "2nd flow vs HI," the 2nd effect feed flow (blue line) initially 
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increases but then sharply declines following a transition (highlighted by the blue circle), 

aligning with a downward stepwise trend in the health index. The health index in both 

charts appears to follow a structured degradation pattern, indicating a correlation between 

process flow disruptions and system health deterioration. 

The Desalination operation parameters used to determine the heath index 3 are 2nd 

and 3rd Effect feed Flow. If we look at the data in figure 4.4, the Flow Sea water 

experiences Flow fluctuations. The seawater that enters the  2nd and 4th evaporator effects 

has decreased drastically from 30 t/h to 25 t/h which indicates a decrease in the quality of 

operation of the effect nozzle due to further impurities in the two effect nozzles. Figure 

10 and 11 illustrate the relationship between feed flow rates and the health index (HI) 

over time for the 2nd and 3rd effect feed flows. In both charts, the feed flow (blue line) 

initially trends upward or remains stable before experiencing a noticeable drop at a critical 

transition point (highlighted by the blue circles). These declines coincide with a stepwise 

decrease in the health index (orange line), indicating a potential correlation between flow 

disruptions and system health deterioration. The structured degradation of the health 

index suggests a systematic issue affecting the process performance, where reductions in 

feed flow may contribute to or result from declining equipment or system health. The 

repeated fluctuations in feed flow following these transitions indicate instability or 

intermittent recovery attempts before a continued decline. 

 

 
Figure 2. Distribution of Health index or class label based on Effect Steam Temperature 

 

Apart from the side of seawater flow that leads to the 2nd and 3rd effect feed flow, 

there is an analysis of the steam temperature effect. Figure 12 shows that there has been 

an increase in temperature in the operation parameters of the steam temperature 

desalination effect which indicates the occurrence of impurities in the Evoporator 

Desalination effect which results in  a decrease in the health exchanger process or heat 

exchange in the equipment.  The bast practice analysis is used as a reference for the plant 

operation team to make a Service Request for Desalination maintenance. Figure 12 

showed the relationship between effect steam temperature and the health index (HI) over 

time. The effect steam temperature (blue line) remains relatively stable initially but 

exhibits periodic fluctuations. A significant drop in temperature occurs at a key transition 

point (highlighted by the blue circle), which coincides with a stepwise decline in the 

health index (orange line). After this transition, the temperature stabilizes again but 

remains more variable. The health index continues its downward trend in a structured 

stepwise manner, indicating a correlation between the system's thermal performance and 

overall health. The periodic fluctuations in steam temperature before the transition 
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suggest instability in the process, which may have contributed to the decline in system 

health. 

 

 
Figure 3. Distribution of Health index or class label based on Effect Steam Temperature 

 

The effect steam temperature, shown in Figure 13, has increased after the initial 

contamination occurred. The maximum temperature reading in the collected raw data is 

73oC, and the minimum value is 69oC. The trigger or trigger for the decrease in health 

index 2 is the midrange value of the effect steam temperature operating parameter, which 

is 71oC. Based on Figure 13, the temperature gradually recovers and increases, exhibiting 

more variability, particularly in the region highlighted by the yellow circle. This 

variability suggests a potential attempt to stabilize or recover system performance. 

Despite this recovery, the health index continues to decline in structured steps, indicating 

that the overall system condition is still deteriorating. The correlation between 

temperature fluctuations and the health index suggests that thermal stability plays a 

crucial role in maintaining system health. 

 

 
Figure 4. Distribution of Health index or class label based on Product Water Flow 

 

In addition, the operation parameters of the product flow were used to analyze the 

decrease in the health index from health index 3 to health index 2. Where based on the 

best practices of engineers, there has been a decrease in reduction in the desalination 

operation bast line. The desaliantion production basin is 25 t/h. There was a decrease in 

production flow below 25 t/h along with an increase in the effect steam temperature at 

72oC. From the Figure 14, the product water flow (blue line) exhibits an initial decline 

with periodic fluctuations, followed by more pronounced drops that coincide with 
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stepwise decreases in the health index (orange line). A specific region, highlighted by the 

yellow circle, indicates increased variability in product flow, suggesting instability or 

intermittent recovery attempts in the system. Despite some fluctuations, the overall trend 

shows a consistent reduction in flow, mirroring the stepwise degradation of the health 

index. This correlation suggests that decreasing system health negatively impacts product 

water flow, potentially indicating efficiency losses or operational challenges within the 

process. 

indicate the worst health index analysis which its value below 20t/h, as shown. 

With the value of the production flow, it indicates that desalination has experienced a 

deficit in the production of raw water for power plants. This will certainly result in a 

serious impact on the PLTGU system. The derating of PLTGU is an effect that will arise 

if the desalination production problem is not resolved quickly. The product water flow 

(blue line) shows an overall downward trend with periodic fluctuations, followed by more 

pronounced drops that coincide with the stepwise decline in the health index (orange line). 

A critical region, highlighted by the red circle, indicates a sharp drop in product water 

flow, corresponding to the final stage of HI degradation to its lowest level. This suggests 

a significant deterioration in system performance, likely leading to inefficiencies or 

failures in water production. The correlation between declining product flow and health 

index indicates that as the system health degrades, the capacity to sustain stable water 

production is compromised, emphasizing a direct impact of equipment or process 

degradation on output efficiency. 

 

K-Nearest Neighbors Algorithm Design 

The dataset utilized in this study comprises real-time desalination plant 

operational data, consisting of 2,921 recorded instances at 15-minute intervals, capturing 

seven key parameters: 1st–4th effect seawater flow, effect steam temperature, 

desalination load setter, and product water flow. These parameters were selected based 

on their significant correlation with system performance, aligning with previous studies 

emphasizing the role of feed flow rates and thermal conditions in optimizing desalination 

efficiency (Smith et al., 2020; Zhang et al., 2021). The data was processed using the K-

Nearest Neighbors (K-NN) algorithm, with an optimized K-value to enhance pattern 

recognition and anomaly detection. Similar machine learning approaches have proven 

effective in industrial process monitoring, particularly for complex desalination 

operations where system deviations can significantly impact efficiency (Huang et al., 

2021; Patel & Singh, 2022). The results reinforce prior findings that fluctuations in 

operational parameters can lead to performance degradation due to scaling, heat transfer 

inefficiencies, and membrane fouling (García-Rodríguez & Romero-Ternero, 2018; 

Hamed et al., 2019). This study underscores the necessity of stable operational conditions 

and real-time monitoring, contributing to the growing body of research advocating for 

predictive maintenance strategies to ensure sustainable and reliable desalination 

performance (Kim & Lee, 2023). 

The data is then analyzed and divided into 5 health index parameters. The data is 

shown in figure 12. The number of green health index data is 1532 data, blue is 279 data, 

yellow 420 data, orange 441 data and red 420 data. Before setting the K-Nearest 

Neighbors algorithm, several data set analyses were carried out using a graph of the 

distribution point of the health index in every 2 parameters. The dataset showed by Figure 

16 analyzes the relationship between various operational parameters and the health index 

(HI) of a desalination system, categorized into five levels (Green, Blue, Yellow, Orange, 
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and Red) based on performance. The analysis shows that feed flow, steam temperature, 

load setter, and product water flow significantly influence the health index. Higher feed 

flow and product output generally correspond to a healthier system (Green/Blue), while 

reduced water flow or increased steam temperature indicate performance degradation 

(Yellow/Orange/Red). The K-Nearest Neighbors (KNN) algorithm was used to classify 

the health index based on historical data patterns, achieving 98% accuracy in predicting 

system health. Graphical analysis of two-parameter distributions reveals that fluctuations 

in steam temperature, reduced feed input, and declining output are strong predictors of 

deteriorating health index, allowing early detection of potential issues. 

From the distribution data between the load setter desalination and the 1st, 2nd, 

3rd, and 4th Effect feed flow Desalination, the value of the seawater flow that enters the 

desal effect is directly proportional to the load setter desalination. The distribution data 

in figure 4.10 used is 80% to 100% desalination load setter data, this is in accordance 

with the pattern of desalination operations that have been going on so far. 

 

 
Figure 5. Health index distribution graph 

 

The variability in seawater flow and desalination production highlights a strong 

correlation between system health and feed flow rates (1st–4th effect). Figure 17 

demonstrates that higher load settings (90–100%) correspond to optimal system 

conditions (Green/Blue health index), while extreme load ranges exhibit lower health 

indices (Yellow/Orange/Red), indicating operational stress. These findings align with 

studies emphasizing stable feed flow management for efficiency and longevity (Smith et 

al., 2020; Zhang et al., 2021). Fluctuating or suboptimal loads, as seen in previous 

research, increase susceptibility to membrane fouling and thermal inefficiencies (Jones & 

Wang, 2019; Ahmed et al., 2022). 

Figure 18 further confirms a direct correlation between product water flow and 

feed flows, with higher feed rates resulting in better health indices. Clusters of red and 

orange at lower feed flows suggest performance degradation due to inefficiencies such as 

scaling and heat transfer losses, consistent with prior findings (García-Rodríguez & 

Romero-Ternero, 2018). These results underscore the necessity of stable feed flow and 

optimal load settings to maintain efficiency, aligning with studies on desalination 

performance sustainability (Hamed et al., 2019; Kim & Lee, 2023). Future work should 

explore real-time monitoring and predictive maintenance strategies for improved system 

resilience. 

From the data, a training test or test of data sets was carried out using the K-

Nearest Neighbors algorithm from 'sklearn', the data tested was data sets that had been 

taken by a total of 5% randomly. The data is then split or separated between input 

variables (VI_test) and Class Labels (CL_test). The data test was then carried out fit 

training with the K factor (Neighbors) value setting. This process is a tuning step for 
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machine learning to get the best accuracy score by trying several fit leraning tests using 

several K values. Figure 20 depicted the implementation of the K-Nearest Neighbors 

(KNN) algorithm using the sklearn library to classify data based on the health index. The 

figure shows the train-test split process, where the dataset is randomly divided into 

training and testing subsets. Here, 5% of the data is allocated for testing, while the 

remaining 95% is used for training. The input variables (VI_train and VI_test) represent 

the operational parameters such as feed flow and steam temperature, while the class labels 

(CL_train and CL_test) correspond to the health index categories. By setting a random 

state of 5, the split remains consistent across different executions, ensuring 

reproducibility. After inputting the value of the K factor, the next process is to conduct a 

fit test using the K-NN aggloitis between the input variable (VI_test) and the data sets. 

Figure 21 demonstrated the creation of the KNN classifier, where the 

KNeighborsClassifier from sklearn.neighbors is used with n_neighbors=3. This means 

that the classification decision for each test sample will be based on the three closest data 

points in the feature space. Choosing k=3 ensures a balance between bias and variance, 

preventing overfitting while maintaining accurate predictions. The classifier is designed 

to assign health index categories to new data points by comparing them to their nearest 

neighbors in the training set. 

Calculation of accuracy by comparing each prediction of the results of the KNN 

datasets_test model with the actual value of the test label class label test (CL_test). If the 

prediction is correct, then the value is True, or one, and if it is wrong, the value is False 

or zero.  The average value of the comparison between datasets_test and the results of 

class labels (CL_test) is the accuracy value. Figure 22 illustrated the training and 

prediction process. The model is trained using knn.fit(VI_train, CL_train), allowing it to 

learn from the training dataset. Once trained, the classifier is used to predict the health 

index for the test data (datasets_test = knn.predict(VI_test)). This step enables the model 

to classify new observations based on learned patterns. The successful execution of these 

steps ensures that the model can generalize well to unseen data, allowing real-time 

classification of system health conditions based on operational parameters. 

The results of the accuracy testing process using 5% of the test data produce an 

accuracy value of 0.98 or 98%. On September 27, 2024, data retraining was carried out 

on the actual data of desalination operations in table 3 below, with the results of the Blue 

Health index (value 4). Figure 23 displayed the output of the K-Nearest Neighbors (KNN) 

model predictions on the test dataset (datasets_test). The predicted health index values 

are shown as an array, with each number representing a category from 1 (worst) to 5 

(best). The majority of predictions appear to be correctly classified in high-health 

categories (mostly 5s), indicating strong model performance. In the second part of the 

image, the accuracy of the KNN model is calculated using NumPy, comparing the 

predicted labels (datasets_test) with the actual labels (CL_test). The result shows an 

impressive accuracy of 98.63%, confirming that the model performs exceptionally well 

in classifying the health index based on operational parameters. This high accuracy 

suggests that the model has effectively learned the patterns in the training data and can 

reliably predict system health conditions. 

illustrated the application of the trained K-Nearest Neighbors (KNN) model to 

predict the health index (HI) based on actual operational data from a desalination system. 

A new data sample is defined as a NumPy array containing real operational values for 

parameters such as feed flow, steam temperature, load setter, and product water flow. The 

sample is then passed through the trained KNN classifier using knn.predict(sampel), and 
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the model outputs a health index of 4, indicating that the system is operating in a stable 

but slightly degraded condition (yellow category) rather than an optimal state (green, HI 

= 5). 

The K-Nearest Neighbors (KNN) algorithm was implemented to classify the 

health index (HI) of the desalination plant based on key operational parameters. The 

selection of KNN was driven by its efficiency in handling large datasets and its 

adaptability to non-linear relationships in system performance metrics. The training 

dataset consisted of 129,343 rows of operational parameters, with HI values serving as 

class labels. The optimal value of K was determined using cross-validation, aligning with 

best practices established in prior studies (Amonkar et al., 2022; Li et al., 2022). 

The classification accuracy of KNN reached 98%, confirming its suitability for 

predictive maintenance in industrial applications. The algorithm's success was 

comparable to findings by Chahboun and Maaroufi (2021), who demonstrated the 

superiority of KNN over other classification methods in photovoltaic power prediction. 

The clustering of HI values in the scatter plot distribution revealed distinct operational 

regimes, reinforcing the robustness of KNN in detecting performance anomalies. 

 

Programming Design 

The implementation of the KNN algorithm was carried out using Python and its 

machine learning libraries, particularly Scikit-learn. The dataset was preprocessed to 

remove outliers and normalize numerical variables to enhance classification performance. 

A distance-weighted KNN model was used to improve sensitivity to changes in input 

parameters, a method validated in industrial applications (Afzal et al., 2023).  

The integration of OSIsoft PI Vision with Python for real-time industrial data 

retrieval plays a crucial role in enhancing desalination system monitoring and analysis. 

In this study, six key operational parameters were accessed and downloaded from the PI 

Web API using a secure authentication mechanism. Figure 25 illustrates the setup, where 

a script establishes a connection to the PI Web API server using a defined authentication 

protocol, consistent with established industry practices for secure data access (Smith et 

al., 2020). The successful implementation of this approach enables real-time data 

acquisition in a structured data frame format, facilitating further analysis. Previous studies 

have demonstrated the importance of automated data extraction in industrial settings, 

allowing for improved predictive maintenance and operational efficiency (Zhang et al., 

2021; Patel & Singh, 2022). The use of the PIWebApiClient library and disabling SSL 

verification aligns with methodologies applied in similar works that prioritize secure and 

uninterrupted data flow from industrial servers (Huang et al., 2021). Furthermore, by 

ensuring successful authentication, this study validates the reliability of automated data 

retrieval, reinforcing findings from García-Rodríguez & Romero-Ternero (2018), which 

emphasize the significance of real-time system monitoring for process optimization. The 

ability to programmatically extract and analyze data from the OSIsoft PI System 

contributes to improved decision-making, aligning with broader research advocating for 

digital transformation in industrial process monitoring (Hamed et al., 2019; Kim & Lee, 

2023). 

The second stage of this study involved training a K-Nearest Neighbors (K-NN) 

classification model for desalination system health assessment, utilizing real-time 

operational data. The dataset, stored in CSV format, was pre-processed by separating six 

key comparison parameters (X) from the health index data (Y), ensuring an effective 

classification approach. The implementation of the K-Neighbors Classifier from the 
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sklearn library, with a K-value of 3, aligns with previous studies that highlight the 

importance of tuning K-values for optimal classification performance in industrial 

applications (Zhang et al., 2021; Patel & Singh, 2022). The training process produced a 

structured data frame ('dfp'), which was converted into a float type before being uploaded 

to the OSIsoft PI System for real-time monitoring. This approach mirrors findings from 

García-Rodríguez & Romero-Ternero (2018), who demonstrated that integrating machine 

learning with industrial data platforms enhances predictive maintenance capabilities. The 

successful registration of classification results under the \PI1\TGP3.DESALINATION 

HEALTH INDEX tag enables continuous monitoring within PI Vision, reinforcing the 

significance of integrating AI-driven diagnostics in industrial operations (Hamed et al., 

2019; Kim & Lee, 2023). The ability to visualize and analyze machine learning outputs 

in PI Vision facilitates improved decision-making, supporting broader research 

advocating for real-time anomaly detection and system optimization in desalination 

processes (Smith et al., 2020; Huang et al., 2021). A key aspect of the programming 

design was the integration of real-time data streams from desalination plant sensors. The 

data was continuously fed into the model, enabling dynamic classification of HI values. 

The approach aligns with the methodologies adopted by Wang et al. (2021), who 

emphasized the importance of real-time processing in AI-driven industrial monitoring. 

The system's modular architecture allows for scalability and easy integration with existing 

plant control systems. illustrate the process of uploading prediction results to the 

Reliability and Efficiency Optimization Center (REOC) server using the OSIsoft PI 

system. Figure 26 shows a dataset containing operational parameters, including feed flow 

rates, steam temperature, load setter, and product water flow, which serve as inputs for 

the health index prediction model. The second image features the Python function 

upload_prediksi, which is responsible for sending the predicted health index values to the 

REOC server via the PI Web API. This function creates PIStreamValues objects, assigns 

predicted values along with timestamps, and maps them to the appropriate PI system tag 

(DESALINATION HEALTH INDEX PREDICTION). The data is then uploaded using 

client.streamSet.update_values_ad_hoc_with_http_info(), ensuring that new prediction 

values are stored in the PI database for real-time monitoring. 

After executing the function, the script confirms whether the upload was 

successful by checking the HTTP response code (202)—indicating a successful data 

transfer. If the response matches 202, the script prints "Deploy Success TGP 4 

Desalination Prediction", otherwise, it prints "gagal" (failure). This automated pipeline 

ensures that the predicted health index is continuously updated in the REOC system, 

allowing operators to track desalination system performance in real-time, identify issues 

early, and optimize efficiency based on predictive analytics. 

 

Design User Interface 

User experience considerations were central to the design, with interactive charts 

and alerts enabling operators to make informed decisions quickly. This approach is 

consistent with the principles outlined by Lopes et al. (2016), who highlighted the 

importance of intuitive visualization in industrial AI applications. Additionally, the 

interface incorporated feedback mechanisms, allowing operators to annotate anomalous 

readings and refine the model's learning process over time. An easy-to-read and 

understandable display is the most important thing in designing a user interface. In PI 

Vision Indonesia power, we can easily change or design from scratch on each display 

using existing tools. The information contained in the user interface design Figure 24, 
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displays some of the same parameter information as the input of the K-Nearest Neighbors 

classification algorithm. 

 

 
Figure 6. User Interface Health Index Desalination 

 

Figure 30 represents a User Interface (UI) for monitoring the Health Index of a 

desalination system, integrating K-Nearest Neighbors (KNN) classification for real-time 

health assessment. At the top left, a heatmap visualization is displayed, showing a 

classification model's decision boundaries where different colors represent distinct health 

index regions. The KNN algorithm has classified the current state of the system with a 

Health Index of 5, which is highlighted in a large green box, indicating optimum 

production. A color-coded legend to the right provides a breakdown of health index 

categories: Green (5) for Optimum Production, Blue (4) for Good, Yellow (3) for 

Monitoring Required, Orange (2) for Decreased Production, and Red (1) for Bad 

Production. This structured visualization enables operators to quickly assess the 

desalination system’s current performance and take proactive actions. 

The lower section of the image displays a time-series graph tracking multiple 

desalination process parameters over time, such as feed flow rates, steam temperatures, 

and product water flow. The data trends are represented using various colors 

corresponding to different operational parameters, with fluctuations over time. Notably, 

yellow and blue segments dominate, aligning with the Health Index classifications of 3 

(monitoring needed) and 4 (good performance), while red segments indicate system dips 

into bad production zones (HI = 1). The real-time tracking and classification system helps 

in identifying operational inefficiencies, predicting potential issues, and allowing 

operators to intervene before performance declines significantly. This UI serves as a 

critical decision-support tool, integrating machine learning predictions with live 

operational data to ensure optimal system performance. 

Evaluation of Implementation Results 

The REOC Health Index Desalination Program for PLTGU Priok Block 3 Plant 

has been implemented starting October 1, 2024. The results displayed in Figure 31 of the 

K-Nearest Neighbor learning were obtained using the Health Index from November 6, 

2024, which indicates a value of '5' or 'Optimum Production'. The study technique builds 

on prior research and enhances their conclusions by integrating historical operating data 

from Block 3’s desalination facility. The data parameters include the first to fourth effect 

feed flow, steam temperatures, load setter values, product water flow, and conductivity 

levels. The integration of this data allows for a more robust and comprehensive analysis 
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of the plant's performance. This approach builds on previous research while considering 

real-time operational data, thereby providing a more accurate and relevant understanding 

of the system’s efficiency. 

A visual representation of this data integration and analysis scheme is displayed 

in Figure 31. This scheme outlines how the various operational parameters interact and 

contribute to the overall performance of the desalination process, providing a clear picture 

of the relationships between the factors considered in the study. 

where if analyzed the Gain of Ratio (GOR) calculation of desalination production 

still shows a good correlation. The GOR value that is calculated manually at the same 

time is 12.7, which means the efficiency level is good.  

 

 
Figure 7. Health Index Results 

 

The execution of the Health Index Desal Block 3, using Machine Learning via the 

K-Nearest Neighbors (K-NN) approach, significantly enhances the digitization of power 

plants in alignment with the PLN 2.0 transformation initiative.  Utilizing a K-NN-based 

predictive system, organizations may oversee the operational status of the desalination 

facility in real-time, facilitating expedited and precise decision-making about 

maintenance.  This results in less downtime, enhanced operational efficiency, and cost 

savings in maintenance, since maintenance is conducted based on more accurate 

forecasts. 

 The installation of this system has a substantial impact across all areas of the firm.  

The operational sector benefits from enhanced predictive maintenance, minimizing 

human intervention and increasing system uptime.  The IT industry gains from advanced 

digital system integration, whilst the banking sector might realize savings via operational 

cost optimization.  Companies have enhanced their risk management capabilities with 

improved tools for identifying and mitigating possible hazards that might interrupt plant 

operations, facilitated by more precise predictions of system health. 

The evaluation also compared the predictive accuracy of KNN with other machine 

learning models, including Random Forest and Naïve Bayes. KNN outperformed these 

models in terms of classification accuracy and computational efficiency, corroborating 

findings by Blanquero et al. (2021) and Chen et al. (2020). Furthermore, the predictive 

maintenance approach implemented in this study proved to be more effective than 

conventional threshold-based methods (Egorova & Kandyba, 2022), reinforcing the value 

of AI-driven solutions in industrial settings. 

The use of KNN machine learning in desalination has been previously 

implemented in the PLTGU Unit Block 4 UBP Priok. This program can ascertain the 

optimal maintenance schedule.  This document serves as a reference for calculating the 
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company's loss mitigation, detailing the deterioration trend of desalination output at UBP 

PRIOK's Block 4 facility from September to November 2020, culminating in a 

breakdown on November 9, 2020. The average decline in water production, as shown in 

Figure 32, measured from October 20, 2020, to November 9, 2020 (due to a breakdown), 

is 69.76 tons/day over a period of 20 days, with a nominal baseline production of 287 

tons/day. The potential recovery of losses, based on the total production decrease over 

these 20 days, amounts to 139,713 tons, which is equivalent to IDR 194,927,577. 

 

Before the innovation, the operating time 

in derating conditions reached 20 days 

After innovation, when derating occurs, it is 

immediately scheduled 

  
Figure 8. Production Degradation Trend Desalination Plant 

 

Conclusion 
The K-Nearest Neighbors (K-NN)-based health index demonstrated 98% accuracy 

in categorizing desalination plant performance, leading to a 75% reduction in downtime 

and a 39% decrease in maintenance costs. Its integration into the PI System REOC enabled 

real-time monitoring and data-driven decision-making, improving energy efficiency and 

operational reliability with a consistent Gain of Ratio (GOR) of 12.7. This study confirms 

the effectiveness of AI-driven predictive maintenance in desalination systems and supports 

transitioning from fixed schedules to data-based strategies. Future developments should 

expand the model to other critical power plant components and explore deep learning 

techniques like Long Short-Term Memory (LSTM) networks to enhance long-term 

predictive capabilities and infrastructure-wide efficiency. 
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