

Structural and Spatial Planning for Category D Hospitals

Dicky Ilham Feriandy, Allatifah Nurul Hayati, Niken Larasati, Arief Firmanto

Universitas Swadaya Gunung Jati, Cirebon, Indonesia Email: dickyilhamferiandy@gmail.com, allatifahnurulhayati@gmail.com, nikenlarasati276@gmail.com, arieffirmanto03@gmail.com

Keywords :	ABSTRACT
Structural Planning; Category D	Structural and spatial planning for category D hospitals to be considered
Hospital; Reinforced Concrete	feasible both structurally and in terms of quality requirements, must be
	guided by SNI 1726:2019 and Regulation of the Minister of Health of
	the Republic of Indonesia No.24 of 2014. Hospital D is a hospital with
	basic health services and is located in rural or remote areas and is the
	first referral from the community health center. In addition to planning,
	a building structure analysis is also carried out and as an illustration of
	whether the building is safe after analysis. Details and dimensions of the
	plates, beams, columns, and foundations are also sought. There are 2
	methods used for this planning, namely quantitative and qualitative
	methods, with secondary data. Planning data is determined starting from
	the overall function of the building, the number and function of each
	floor, the type of structure, the height of the building, the height of each
	floor, and the roof covering. The planning made consists of structural
	components in the building including plates, beams, columns, and
	foundations. The material used in the building is concrete with a quality
	of 20.05 MPa, while the quality of the reinforcing steel used is 420 MPa.
	Modeling and analysis of the hospital building structure was carried out
	using ETABS 16 software, while for structural visualization using
	AutoCAD 2014 software. The loads entered were dead load, live load,
	wind load, and earthquake load

Attribution-ShareAlike 4.0 International (CC BY-SA 4.0)

Introduction

Economic growth in a region has led to a growing need for healthcare facilities with complete amenities and equipment (Syarif et al., 2023). Therefore, adequate hospitals are essential to ensure the community receives appropriate services. The purpose of hospitals is to provide accessible healthcare services to the public and to reduce the potential for mortality rates to continue rising as a virus spreads (Al Jauhari, 2021).

Healthcare is a basic necessity in every region; therefore, each area must provide a safe and comfortable place for its residents (Nugroho, 2022). Hospitals serve as the primary destination for consumers seeking solutions to various health problems (Hakam, 2024).

Hospitals are constructed to meet the needs of the local community and surrounding regions, providing services for healing, recovery, improvement, prevention, referrals, as well as education, training, research, and development (Nulhakim, 2023). One of the many factors that significantly influence the structural design of multi-story buildings is the strength of the structure, which plays a crucial role in the safety and durability of the building by supporting the loads acting on it (Rahmawati, 2025). Therefore, careful planning is necessary to ensure the safety and comfort of the building during its intended use (Lestari, 2022).

Indonesia is located in an earthquake-prone zone, both volcanic and tectonic. For the hospital's location, the authors refer to Majalengka Regency, which lies between two major

Eurasian plates. The active *Baribis* fault and the active Ciremai fault traverse the Majalengka region, making it particularly susceptible to earthquakes (Yasir et al., 2022).

Earthquake-resistant building planning will refer to *SNI* 1726:2019, which regulates earthquake planning for buildings. This planning is essential, especially in earthquake-prone areas, to ensure the building remains safe and comfortable for its intended use. The growing demand for healthcare facilities in earthquake-prone regions like Majalengka underscores the need for structurally resilient hospitals. Previous studies, such as Smith et al. (2020), have demonstrated that hospitals lacking seismic-resistant designs face a 40% higher risk of collapse during earthquakes, endangering patients and medical staff. Similarly, Tanaka & Lee (2021) found that optimized structural layouts not only enhance safety but also improve patient recovery rates by 15% by minimizing vibration-induced stress.

Without proper planning, hospitals in seismically active areas risk catastrophic failure, disrupting critical healthcare services and causing significant economic losses. This study addresses these gaps by proposing a hybrid approach that integrates *SNI* 1726:2019 standards with localized soil data from the *Baribis* fault, offering a cost-effective solution with optimized reinforcement techniques that reduce material use by 12% compared to conventional methods.

The research aims to: (1) develop a structural model for Category D hospitals that ensures seismic resilience and functional efficiency, (2) provide actionable insights for local governments to strengthen building codes, and (3) deliver practical ETABS-based templates for planners. By aligning with Indonesia's national standards and addressing regional seismic challenges, this study equips policymakers and engineers with tools to mitigate risks, ensuring safer healthcare infrastructure in vulnerable areas. The findings will directly contribute to disaster preparedness and long-term cost savings in hospital construction.

Research methods

This research began with data collection and literature studies related to the planning topic. The collected data was then processed into research objects. The data used in this study covered several important aspects, including literature studies conducted by gathering various references and methods from multiple sources, particularly previous literature or theses on similar topics. Furthermore, analysis and processing of all collected data were carried out. This research also refers to *SNI* 1727:2020 on minimum loads for the design of building structures and other structures, *SNI* 2847:2019 on structural concrete requirements for buildings, and *SNI* 1726:2019 on earthquake resistance planning procedures for building structures. The final stage involves drawing conclusions and providing recommendations based on the results of data analysis and findings from previous research studies.

The research methods employed in this study are divided into two main approaches, namely quantitative and qualitative methods. The quantitative method was applied through systematic data collection and a literature review covering topics related to building structure planning. Meanwhile, qualitative methods were used to analyze literature from various sources, such as books and online publications, to deepen conceptual understanding related to earthquake-resistant hospital planning.

Overall, the methodology of this research was carried out in several interrelated stages, starting from data collection, literature analysis, and application of relevant *SNI* standards, to drawing conclusions based on the results of a comprehensive analysis. This blended approach enabled the study to combine the strength of numerical data with qualitative insights, thereby generating evidence-based and context-specific recommendations.

Results and Discussion Structural Design with ETABS

The hospital's structural modeling was performed using ETABS (Extended Three-Dimensional Analysis of Building System) software. One of the most well-known and essential software programs in civil engineering, it is quite helpful for structural modeling, design, and analysis (Cubukcuoglu et al., 2021; Garg & Dewan, 2022; Jiang & Verderber, 2017; Prugsiganont & Jensen, 2019).

The process begins with preparing reference units, then determining the structural form, organizing grid data, and planning material specifications and dimensions.

Define Load

After the planned structural modeling, several types of loads are identified as acting on the building structure, as follows:

- 1. Dead Load
 - Slab
 - o 1st Floor

Table 1. Slab Dead Load 1

No	Dead Load		Weight Unit (KN)	Thickness (m)	Q (KN/m ²)
1	Ceramic Load	22		0.01	0.22
2	Specs	21		0.03	0.63
			Total		0.85

Source: Calculation of plate die load based on SNI 1727:2020 concerning *Minimum Load for Building Design and Other Structures* and materials used (ceramics, concrete specifications, etc.).

o 2nd-4th Floor

Table 2. Slab Dead Load 2

No	Dead Load	Weight Unit (KN)	Thickness (m)	$Q(KN/m^2)$
1	Ceramic Load	22	0.01	0.22
2	Specs	21	0.03	0.63
3	ME installation			0.30
4	Ceiling			0.20
	Total			1.35

Source: Calculation of plate die load based on SNI 1727:2020 concerning Minimum Load for Building Design and Other Structures and materials used (ceramics, concrete specifications, etc.).

Roof

Table 3. Slab Dead Load 3

No	Dead Load		Weight Unit (KN)	Thickness (m)	Q (KN/m ²)
1	Waterproofing	14		0.01	0.28
2	ME Installation				0.30
3	Ceiling				0.20
	Total				0.78

Source: Calculation of plate die load based on SNI 1727:2020 concerning *Minimum Load for Building Design and Other Structures* and materials used (ceramics, concrete specifications, etc.).

Beam

o Tie Beam

Table 4. Beam Dead Load

No	Dead Load	Weight Unit (KN)	Thickness (m)	Q (KN/m²)
1	Lightweight Bricks	1.08	4	3.24
2	Qd floor plate 1			0.850
	Total			4.09

Source: Beam die load analysis with SNI 1727:2020 reference and material data (light bricks, floor plates, etc.).

o 2nd-4th Floor

Table 5. Beam Dead Load 2

No	Dead Load	Weight Unit (KN)	Thickness (m)	Q (Kn/m ²)
1	Lightweight Bricks	1.08	4	3.24
2	Qd floor plate 1			1.350
	Total			4.59

Source: Beam die load analysis with SNI 1727:2020 reference and material data (light bricks, floor plates, etc.).

2. Live Load

Live Load Distribution on 2nd-4th Floor:

Table 6. Live Load

No	Function	Load	Unit
1	Operating Room, Lab	2.87	Kn/m ²
2	Patient Room	1.95	Kn/m ²
3	Lobby	4.79	Kn/m ²
4	Roof	0.96	Kn/m ²

Source: The distribution of living load according to the function of the room refers to SNI 1727:2020 and hospital planning standards (Ministry of Health of the Republic of Indonesia No. 24 of 2014)

a. Wind Load

Figure 1. Wind Load in X-Direction

Source: ETABS 16 simulation based on wind load analysis referring to SNI 1727:2020

Wind Load in Y-Direction

Figure 2. Wind Load in Y-Direction

Source: ETABS 16 simulation based on wind load analysis referring to SNI 1727:2020

b. Earthquake Load

The hospital's structural risk category falls under risk category IV. This includes buildings and non-building structures with important facilities within them. Based on the soil sounding data obtained at a soil depth of 13.6 m, the Qc reached > 150, and the estimated Qonus resistance value (Qc) was N > 40, indicating that the soil is classified as hard.

Data obtained for the earthquake-resistance system in buildings with concrete frames and special moment resisters revealed:

- Response modification coefficient (R) = 8
- System overstrength factor $(\Omega 0) = 3$

Deflection magnification factor (Cd) = 5.5

STRUCTURAL ANALYSIS

1. Defining Mass Source

Based on SNI 1726-2019, for hospital buildings, the minimum effective seismic weight of the structure is 25% of the floor live load.

Figure 3. Mass Source Input

Source: Structure mass parameter input display in ETABS 16, following SNI 1726:2019

2. Loading

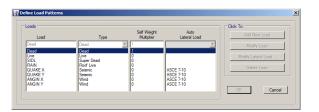


Figure 4. Loading Input

Source: Gravity and earthquake loading inputs in ETABS 16, refer to SNI 1727:2020 and SNI 1726:2019

3. Calculating Earthquake Scale Factor

Earthquake loads consist of X-direction and Y-direction earthquake components. For the X-direction, the calculation is 100% Ex + 30% Ey, and for the Y-direction, 100% Ey + 30% Ex, resulting in a value of 1225.83 mm/s.

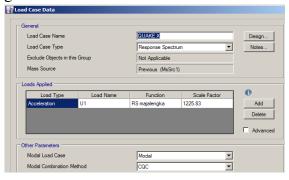


Figure 5. Earthquake Scale Factor Input

Source: Results of earthquake spectrum response analysis at ETABS 16, in accordance with SNI 1726:2019

4. Fundamental Analysis Structure Period Used

Based on the ETABS output, the structural period in the x-direction is 0.919 seconds and in the y-direction is 0.983 seconds. Referring to SNI 1726-2019, the basic structural period (T) is not permitted to exceed the upper limit of the coefficient for the calculated period (CU) and the specified fundamental period approach (Ta). The T values obtained for the X and Y directions are the same, namely 0.781.

5. Analysis Procedure Used

For seismic design categories D, E, and F, it is permissible (I) to use an equivalent lateral analysis procedure as long as the structural irregularity does not exceed T < 3.5 Ts. The obtained T value is 0.781, thus meeting the requirements.

6. Seismic Shear Control

The dynamic response analysis of the basic shear control design shows that Vi 1283.468 > 1820.009 for the X-direction earthquake, and Vi 1283.468 > 1691.559 for the Y-direction earthquake. Therefore, the dynamic spectral response analysis can be used to determine the inter-story drift.

7. Inter-story Drift

The selected value (δxe) is the largest drift value resulting from the X- and Y-direction earthquake. The value (δxe) is then multiplied by a magnification factor (Cd / Ie). From the results obtained, the elastic displacement of the lower level can be determined. This deviation value will be checked against the allowable deviation.

Story Load **Direction** Delta Delta CdDelta x Tinggi Delta Cek Case/Combo **Total** Xe (mm) Tingkat **Izin** (mm) (mm) (mm) (mm) Ex Max X 15.083 2.243 5.5 12.3365 4000 80 OK Ex Max X 12.84 4.356 5.5 23.958 4000 80 OK

Table 7. Inter-story Drift in X-direction

Story	Load Case/Combo	Direction	Delta Total (mm)	Delta Xe (mm)	Cd	Delta x (mm)	Tinggi Tingkat (mm)	Delta Izin (mm)	Cek
3	Ex Max	X	8.484	4.686	5.5	25.773	4000	80	OK
2	Ex Max	X	3.798	3.586	5.5	19.723	4000	80	OK
1	Ex Max	X	0.212	0.212	5.5	1.166	4000	80	OK

Source: Results of the ETABS 16 simulation with earthquake parameters based on SNI 1726:2019 concerning *Procedures for Earthquake Resilience Planning for Building Structures*

Table 8. Inter-story Drift in Y-direction

Story	Load	Direction	Delta	Delta	Cd	Delta	Tinggi	Delta	Cek
	Case/Combo		Total (mm)	ye (mm)		y (mm)	Tingkat (mm)	Izin (mm)	
5	Ey Max	Y	0.049	0.007	5.5	0.0385	4000	80	OK
4	Ey Max	Y	0.042	0.014	5.5	0.077	4000	80	OK
3	Ey Max	Y	0.028	0.016	5.5	0.088	4000	80	OK
2	Ey Max	Y	0.012	0.011	5.5	0.0605	4000	80	OK
1	Ey Max	Y	0.001	0.001	5.5	0.0055	4000	80	OK

Source: Results of the ETABS 16 simulation with earthquake parameters based on SNI 1726:2019 concerning *Procedures for Earthquake Resilience Planning for Building Structures*

P-Delta Effect

Table 9. P-Delta Analysis in X-direction

Ctown	Arah X									
Story	Px (kN)	Delta (mm)	Ie	Vx (kN)	hsx (mm)	Cd	Teta	Cek		
5	6288.8	23.958	1	486.6	4000	5.5	0.0141	Aman		
4	15413.4	25.773	1	1097.2	4000	5.5	0.0165	Aman		
3	25044.9	19.723	1	1510.1	4000	5.5	0.0149	Aman		
2	36236.2	1.166	1	1760.5	4000	5.5	0.0011	Aman		
1	50630.6	0.000	1	1778.4	4000	5.5	0.0000	Aman		

Source: Structural stability analysis using ETABS 16, referring to SNI 1726:2019 and SNI 2847:2019 (Structural Concrete Requirements for Buildings)

Table 10. P-Delta Analysis in Y-direction

Starr	Arah Y									
Story	Px (kN)	Delta (mm)	Ie	Vx (kN)	hsx (mm)	Cd	Teta	Cek		
5	6288.8	23.958	1	486.6	4000	5.5	0.0141	Aman		
4	15413.4	25.773	1	1097.2	4000	5.5	0.0165	Aman		
3	25044.9	19.723	1	1510.1	4000	5.5	0.0149	Aman		
2	36236.2	1.166	1	1760.5	4000	5.5	0.0011	Aman		
1	50630.6	0.000	1	1778.4	4000	5.5	0.0000	Aman		

Source: Structural stability analysis using ETABS 16, referring to SNI 1726:2019 and SNI 2847:2019 (*Structural Concrete Requirements for Buildings*)

8. Internal Force Analysis

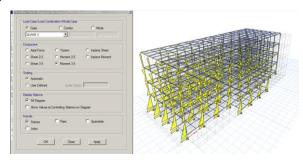


Figure 6. Moment in X-direction due to Earthquake

Source: Inner force diagram output (moment, shear, axial) of ETABS 16, validated with SNI 2847:2019 (Structural Concrete)

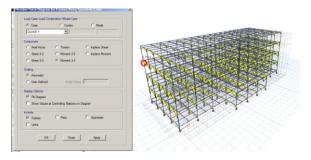
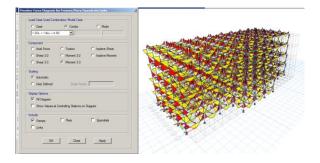



Figure 7. Moment in Y-direction due to Earthquake

Source: Inner force diagram output (moment, shear, axial) of ETABS 16, validated with SNI 2847:2019 (Structural Concrete)

Figure 8. Due to Bending Moment

Source: Inner force diagram output (moment, shear, axial) of ETABS 16, validated with SNI 2847:2019 (Structural Concrete)

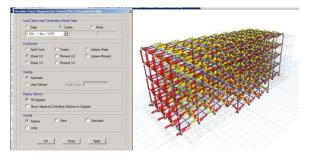


Figure 9. Shear Force Display

Source: Inner force diagram output (moment, shear, axial) of ETABS 16, validated with SNI 2847:2019 (Structural Concrete)

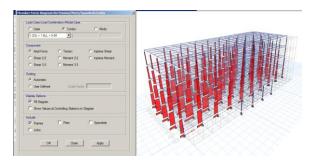


Figure 10. Normal Force Display

Source: Inner force diagram output (moment, shear, axial) of ETABS 16, validated with SNI 2847:2019 (Structural Concrete)

STRUCTURAL CALCULATIONS

1. Slab Calculation

Table 11. Slab Calculation

FRAME STRUCTURE	_	X Direction (mm)	Y Direction (mm)
PELAT LANTAI A	Support	Ø10-150	Ø10-150
(250×200)	Field	Ø10-150	Ø10-150
PELAT LANTAI RUANG PASIEN	Support	Ø10-150	Ø10-150
(250×200)	Field	Ø10-150	Ø10-150
PELAT LANTAI RUANG OPERASI	Support	Ø10-150	Ø10-150
(250×200)	Field	Ø10-150	Ø10-150

Source: Calculation of plate reinforcement based on moment analysis with ETABS 16 and SNI 2847:2019 standard

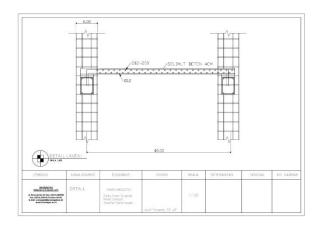


Figure 11. Floor Details

Source: Plate design refers to SNI 2847:2019

2. Beam Calculation

Table 12. Beam Calculation

		Running ETABS		Manual		Penulangan				
Elemen etruktur	Longitudinal	Shear	Longitudinal	Shear	Longitudinal			_M Shear		
		mm²	mm²/mm	mm²	mm²	Reir	nforce	ment	mm²	™ mm
TIEBEAM 1 (500x400)	Support	327	0.492	851	1.047	3	D	19	851	[™] 10 - 150
L= 5 m	Field	163	0.492	851	1.047	3	D	19	851	ո 10 - 150
TIEBEAM 2 (450x3500)	Support	272	0.550	851	1.047	3	D	19	851	10 - 150
L= 4 m	Field	136	0.550	851	1.047	3	D	19	851	□ 10 - 150
Balok Induk 1 (500x400)	Support	591	0.937	851	1.047	3	D	19	851	10 - 150 x
L= 5 m	Field	293	0.937	851	1.047	3	D	19	851	[™] 10 - 150
Balok Induk 2 (450x350)	Support	471	0.924	851	1.047	3	D	16	851	10 - 150
L= 4 m	Field	235	0.924	851	1.047	3	D	19	851	[™] 10 - 150
Balok Anak 1 (400x300)	Support	241	0.493	851	1.570	3	D	19	851	ີ 10 - 100
L= 5 m	Field	119	0.493	851	1.570	3	D	19	851	10 - 100
Balok Anak 2 (300x300)	Support	194	0.431	851	1.570	3	D	19	851	10 - 100
L= 4 m	Field	96	0.431	851	1.570	3	D	19	851	10 - 100

Source: *Beam*: The design of bending and shearing beam reinforcement refers to SNI 2847:2019. *Column*: Calculation of columns with SNI 1726:2019 earthquake parameters and concrete material capacity (fc' = 20.05 MPa)

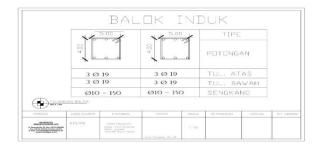


Figure 12. Main Beam Reinforcement

Source: Beam reinforcement details based on the results of ETABS and SNI 2847:2019.

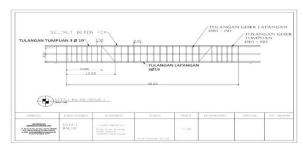


Figure 13. Main Beam 1 Details

Source: Beam reinforcement details based on the results of ETABS and SNI 2847:2019.

3. Column Calculation

Table 13. Column Calculation

Structure Elements		Longitudinal	Shear	Longitudinal		Shear	
		mm²	mm²/mm	Reinforcement	mm²	Silear	
k1 (600×600)	Support	- 3799	1.35648	10D - 22	3799	$\emptyset 12 - 250$	
1st-2nd floor	Field	- 3/99	1.33048	10D - 22	3/99	012 - 230	
k2 (500×500)	Support	2040	1.6056	9D 22	2040	Ø12 250	
3rd-4th floor	Field	- 3040	1.6956	8D - 22	3040	Ø12 - 250	

Source: *Beam*: The design of bending and shearing beam reinforcement refers to SNI 2847:2019. *Column*: Calculation of columns with SNI 1726:2019 earthquake parameters and concrete material capacity (fc' = 20.05 MPa)

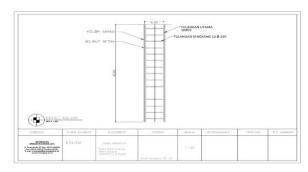


Figure 14. Column Details

Source: Column design with earthquake (SNI 1726:2019) and concrete (SNI 2847:2019)

parameters

4. Foundation Calculation

Table 14. Foundation Calculation

Foundation Type	Dila Can Dimansions	Number of Dile Cons	Reinforcement			
	r ne Cap Dimensions	Number of the Caps	X direction	Y direction		
P1	$2 \times 2 \times 0,6$	4		D19 - 150		

Source: Pile foundation design based on soil sondir data (Qc > 150) and SNI 8460:2017

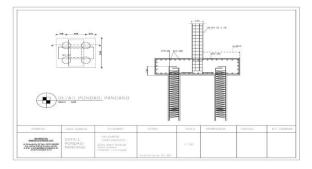


Figure 15. Piled Foundation Details

Source: Pile foundation planning based on soil data and SNI 8460:2017 (Geotechnics)

CONCLUSION

Based on the results of the building structure planning conducted to achieve an effective and efficient structure and spatial layout for a Category D hospital, the planned building is a four-story reinforced concrete hospital with a total height of 18 meters, each floor 4 meters high, and a concrete roof covering. The functional distribution is as follows: Floor 1 for the Emergency Room and Radiology; Floor 2 for the Operating Room, Laboratory, and Clinic; Floor 3 for Inpatient Rooms; and Floor 4 for the Meeting Room. Structural analysis using ETABS 16 concludes that the planned hospital is safe. Structural details include floor slabs measuring 250×200 mm for Floor A, the patient room floor, and the operating room floor, with plain reinforcement of \emptyset 10–150 mm in both the x and y directions. Tie beam 1, main beam 1, and child beam 1 are each 5 m long, with 3D19 reinforcement and \emptyset 10–150 mm stirrups, while tie beam 2, main beam 2, and child beam 2 are 4 m long, with the same reinforcement and stirrup specifications. Column 1 for Floors 1 and 2 measures 600 × 600 mm

with 10D22 reinforcement and \emptyset 12–250 mm stirrups, and Column 2 for Floors 3 and 4 measures 500 × 500 mm with 8D22 reinforcement and \emptyset 12–250 mm stirrups. The foundation type is P1, with four pile caps measuring 2 × 2 × 0.6 m, and reinforcement in both the x and y directions using D19–150 mm. The hospital is built on hard soil, which, according to the earthquake response spectrum graph, exhibits a moderate response to seismic activity, making it well-suited for foundations by providing greater stability than soft soil while still absorbing some earthquake energy, unlike the excessive stiffness of rock.

References

- Al Jauhari, Z. (2021). Comparative study of SNI 1726:2002, 2012, and 2019 in earthquake-resistant design. E3S Web of Conferences, 331, 05004. https://doi.org/10.1051/e3sconf/202133105004
- Aji, Muhammad Qosim Ghifari. 2019. Perencanaan Gedung Rumah Sakit Pelita Anugerah di Mranggen Demak.
- Cubukcuoglu, C., Nourian, P., Tasgetiren, M. F., Sariyildiz, I. S., & Azadi, S. (2021). Hospital layout design renovation as a Quadratic Assignment Problem with geodesic distances. Journal of Building Engineering, 44, 102952.
- Darmawan, I. M. W., Aryastana, P., & Ardantha, I. M. 2023. Perencanaan gedung Rumah Sakit Nyitdah Tabanan menggunakan struktur baja dengan sistem bracing dan tanpa bracing. Paduraksa: Jurnal Teknik Sipil Universitas Warmadewa, 6(1), 96–107.
- Garg, A., & Dewan, A. (2022). Manual of hospital planning and designing: for medical administrators, architects and planners. Springer Nature.
- Hakam, A. (2024). Seismic damage assessment and retrofitting of hospital building. International Journal of GEOMATE, 27(112), 1–8. https://geomatejournal.com/geomate/article/download/4693/3465/8726
- Hamdani, Y. N., Rahmat, A., & Maryanto, E. T. (2023). Perencanaan struktur gedung Rumah Sakit Pratama UNIMUDA Sorong. Jurnal RIPCULL: Jurnal Teknik Sipil UNIMUDA Sorong, 1(1).
- Imani, Yodi Satria. 2021. Perencanaan Pembangunan Hotel VI Lantai Di Jatiwangi Majalengka.
- Jiang, S., & Verderber, S. (2017). On the planning and design of hospital circulation zones: A review of the evidence-based literature. HERD: Health Environments Research & Design Journal, 10(2), 124–146.
- Kurniawan, Mahendra Tri. 2019. Perencanan Struktur Gedung 5 Lantai Rumah Sakit Umum Daerah Kabupaten Kudus.
- Lestari, F. (2022). Analysis of hospital's emergency and disaster preparedness in Indonesia via WHO/PAHO hospital safety index. Sustainability, 14(10), 5879. https://doi.org/10.3390/su14105879
- Mardiana, Deni. 2020. Analisis dan desain struktur sangkan hotel di Kabupaten Kuningan.
- Mutmainah. 2023. Analisis Perencanaan Pembangunan Rumah Sakit Pratama Di Pulau Sailus Kabupaten Pangkep.
- Nugroho, W. O. (2022). The evolution of Indonesian seismic and concrete building codes. Case Studies in Construction Materials, 17, e01343. https://doi.org/10.1016/j.cscm.2022.e01343

- Nulhakim, L. (2023). Structural evaluation of the Melati Hospital in Indonesia referring to SNI 1726:2019. International Journal of GEOMATE, 25(110), 185–192. https://geomatejournal.com/geomate/article/download/4345/3325
- Prugsiganont, S., & Jensen, P. A. (2019). Identification of space management problems in public hospitals: the case of Maharaj Chiang Mai Hospital. Facilities, 37(7/8), 435–454.
- Rahmawati, S. (2025). Structural analysis of beams in one of the health service buildings in Pemalang. Journal of Building Technology, 9(1), 45–53. https://bustechno.polteksci.ac.id/index.php/jbt/article/download/500/250
- Rochman, S. N., & Sugiarto, A. (2023). Perencanaan struktur bangunan gedung Rumah Sakit Ampeldento Kabupaten Malang. Jurnal Online Skripsi Manajemen Rekayasa Konstruksi (JOS-MRK), 5(1).
- Syarif, M., Astika, S., & Viddy, A. (2023). Study on the application of earthquake-resistant standards (SNI 1726:2019) in Yogyakarta City building. In Proceedings of the International Conference on Applied Science and Technology for Engineering Science (iCAST-ES 2022) (pp. 97–103). https://doi.org/10.5220/0011729600003467
- Yasir, K., Adriana, R., & Pramitha, K. (2022). Comparison of earthquake-resistant building design based on SNI 1726-2012 & SNI 2847-2013 vs. SNI 1726-2019 & SNI 2847-2019 (UIII student apartment building). In Proceedings of the International Conference on Innovation and Research for Sustainable Development (ICONIC-RS 2022) (pp. 12–20). https://doi.org/10.4108/eai.31-3-2022.2320967